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ABSTRACT

zwitterionic quinoidal
A series of unconventional twisted  sr-electron system molecules has been synthesized via Suzuki cross-coupling of two sterically hindered
arenes. Crystallographic analysis of these molecules reveals a large ring —ring dihedral twist angle (87 °) and a highly charge-separated zwitterionic

ground state. An efficient conversion of phenols into aryl halides is also reported.

Organic chromophores exhibiting very large hyperpolariz- lecular charge transfer) structures (Figure 1), should exhibit
abilities have attracted considerable current research interesvery large hyperpolarizabilities and two-photon absorption
due to their potential applications in novel photonic tech-

nologies such as high-speed optical communications, optica | | | N ININENGdGNEGEEEE
data processing and storage, and integrated opliosdate,

most of the organic molecules developed for this purpose Ri Ry Ri R,

Je — /9
consist of extendeglanar r-conjugated systems end-capped X+ 0 == X__ )
with electron donor and acceptor substituénighich are 2K, X=0,NCH, R, K,
inherently elaborate structurally, complicating synthetic 2witterionic quinoidal
approaches, and frequently subject to chemical, thermal, and TICTOID

photochemical instability.Recent computational investiga-
tions* indicate that relatively simple zwitterionic molecules
with twisteds-electron systems, TICTOID (twisted intramo-
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(Special Issue:Molecular Nonlinear Optics: Materials, Phenomena and
Devices). (d) Verbiest, T.; Houbrechts, S.; Kauranen, M.; Clays, K.;
Persoons, AJ. Mater. Chem1997,7, 2175. (e) Marder, S. R.; Kippelen, . . )
B.; Jen, A. K. Y.; Peyghambarian, Nlature1997,388, 845. (f) Marks, T. cross-sections. The exceptional responses arise from the very
J.; Ratner, M. AAngew. Chem., Int. Ed. Engl995,34, 155. R ; ;

2) (@) Abbotto, E-; Beverina. L. Bradamg:ne, S.: Facchetti, A.: Klein, strong sensitivity of the charge separation and excited-state
C.; Pagani, G. A.; Redi-Abshiro, M.; Wortmann, &hem. Eur. J2003,9,

1991. (b) Barlow, S.; Marder, S. Rhem. Commur2000, 1555. (c) Jen, (3) Galvan-Gonzalez, A.; Belfield, K. D.; Stegeman, G. I.; Canva, M.;
A. K.-Y.; Ma, H.; Wu, X.; Wu, J.; Liu, S.; Marder, S. R.; Dalton, L. R; Marder, S. R.; Staub, K.; Levina, G.; Twieg, RJJAppl. Phys2003,94,
Shu, C.-F.SPIE Proc.1999,3623, 112. 756 and references therein.

10.1021/0l051365x CCC: $30.25  © 2005 American Chemical Society
Published on Web 07/28/2005



charge redistribution to the inter-ring twist angle, which is
tuned by introducing sterically encumbered Bnd R

conditions. Usually, electron-deficient pyridine halides are
reactive with respect to oxidative addition processes, often

substituents. Notably, the mechanism of the response to theturnover-limiting in the Suzuki catalytic cyclé.The slug-

light field is distinctly different from the current models such
s “bond length alternatioh”and “auxiliary donor and

gishness of the present coupling reaction implies that
reductive elimination may be turnover-limiting, presumably

acceptor’® Synthetic access to such chromophores could due to slow formation of a requisite but sterically encumbered

therefore have a major impact on organic electro-optics.

cis-Pd(ll)(aryl}y intermediate. Such sluggishness in Suzuki

The synthetic challenge posed by this type of chromophore coupling was also observed in hindered aryl halides pos-

is obvious: formation of highly hindered substitution patterns
via the coupling of two arenes possessing bulky ortho
substituents. In this contribution, we report the synthetic
realization of the first twistect-electron system molecules
(TMs; Figure 1)7 merocyanine-based dyes containing a tetra
ortho-methylbiaryl core, and their molecular structural
characteristics.

Among the catalytic cross-coupling reactions for unsym-

sessing ortho electron-withdrawing groups using the same
catalysti®® An alternative reason for this inertness in
catalyzed coupling may be inhibition by pyridiffedlisplac-

ing a phosphine ligand to form unproductive complexes in
some Pd-catalyzed aminatiolsTo investigate this pos-
sibility, 4-bromopyridineN-oxide 1 was used as a coupling
partner with boronic aci@, successfully affording the key
tetraortho-methylphenylpyridine cor8 in 53% yield (Scheme

metrical biaryl synthesis, limited success has been realizedl). Interestingly, theN-oxide functionality does not appear

with Stille and Negishi protocols when coupling sterically
hindered fragmentswhile the Suzuki method has shown
more tolerance to steric effec¥$® Recently, Buchwald et

to induce detrimental oxidation of the Pd(0) form of the
catalyst. PyridineN-oxide 3 was next reduced td using
Pd-catalyzed hydrogenation with sodium hypophosphite as

al. reported a highly active Pd(0)/phenanthrene-based phosthe hydrogen sourc€. This deoxygenation is facile and

phine Suzuki catalyst for the synthesis of tebrého-

guantitative. Subsequent cleavage of zheethoxyl group

substituted biaryls, with substituents such as methyl, primary affords pyridylphenol intermediatg in high yield, which

alkyl, phenyl, and alkoxyl groups accommodat&in the

was then quaternized with methyl iodide and deprotonated

case of electron-deficient heteroarenes, however, our initial to afford chromophor@M-1 almost quantitatively.

attempts to couple 3,5-dimethyl-4-bromopyridine with 4-meth-
oxyl-2,6-dimethyl phenylboronic aci@®(Scheme 1) employ-

Scheme 1. Synthesis of Twistedr-System MoleculeTM-1
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The synthetic approach to chromophdrl-2 relies on
Heck cross-coupling (Scheme 2), known to be efficient in

Scheme 2. Synthesis of Twistedr-System MoleculélTM-2
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forming C—C connections between?sgarbons and to be
highly stereoselective for theE)-stereoisomel* Styrenic
coupling partner7 was obtained from the thermal decar-

(8) (a) Saa, J. M.; Martorell, Gl. Org. Chem1993,58, 1963. (b) Dai,

ing this catalyst system were unsuccessful in affording the c.: Fu, G. C.J. Am. Chem. So@001,123, 2719.

key tetraortho-methylbiaryl core under standard reaction
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x 1073%and—2552 x 10-3%esu forTM-1 andTM-2, respectively (Keinan,
S.; Ratner, M. A. Unpublished results).
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boxylation of 3,5-ditert-butyl-4-hydroxycinnamic acid in
DMF.>When the conventional Heck Pd(OA®Ph catalyst
system is employed7 undergoes coupling with various
twisted triflate 6a), bromide 6b), and iodide §c) substrates
to afford the stilbene precurs@&in moderate to excellent
yields of 50, 54, and 91%, respectively. Precu&aas then
quaternized witm-octyl iodide and deprotonated to afford
T™M-2.

Halide precursor§b and 6¢ are important not only for
facilitating the Heck coupling but also for facilitating
introduction of stronger, more stable electron donor func-
tionalities such as the dicyanomethanide grfhich could
not be introduced by triflate nucleophilic substitutioréat!’
Converting phenob into aryl halides, which can undergo

cross-coupling with active methylene compounds such as

malononitrile in the presence of Pd cataly$tss thereby

highly desirable. Few methods have been reported for direct

conversion of phenols to aryl halid€sAttempts to synthe-
size 6b via thermolysis of the phenol-triphenylphosphine
dibromide comple¥®2were unsuccessful. The displacement
of triflate by iodide or bromide is usually feasible in activated
aryl triflates possessing ortho or para electron-withdrawing
group$®but in the present case was unsuccessful in affording
bromide 6b and iodide6c. We therefore devised a new
strategy to convert the phenblto bromide6b and iodide

6¢ by combining Pd-catalyzed aryl triflate aminattdmith

the arylamine-to-aryl halide conversion (Scheme 3). The
conversion began with Pd-catalyzed coupling of triflége
with benzophenone imine, leading to diphenyl ketimine
adduct9 in 98% yield. Subsequent quantitative hydrolysis
of 9 to the primary anilinel0 was facilitated by hydroxy-
lamine hydrochloride. Next, aniliné0 was converted into

Scheme 3. Conversion of Phenol Intermediabeto Aryl
Halides6b and6c
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CuBr; in dry CH;CN to produce bromidesb rapidly,
accompanied by the formation of di- and tribrominated
byproducts due to competitive oxidative CyBrromina-
tion.??224 The multibrominated byproducts, even in low
yields, complicate purification and result in moderate yields
of the desired monobrominated product (50%) after multiple
recrystallizations. In contrast, treatmentldf with nitroso-
nium tetrafluoroborate in dry CY#€N and iodination of the
corresponding diazonium salt with anhydrous Nal affords
pure monoiodidéc in 72% yield. The overall yield of this
four-step phenol-to-aryl iodide conversion is 65%. This
method thereby represents an efficient general route for

the corresponding halides via anhydrous Sandmeyer-like phenol-to-aryl halide conversion.

reactiong? since conventional Sandmeyer methods in aque-
ous medi& gave only low yields and complicated products.
Aniline 10 was treated withert-butyl nitrite and anhydrous
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Single crystals of synthetic intermediat8sand 5, N-
methyl pyridinium saltg}’ and5', and chromophoreEM-1
andTM-2 were obtained via slow evaporation of saturated
solutions?®> The most important feature revealed from the

(24) Doyle, M. P.; Van Lente, M. A.; Mowat, R.; Fobare, W. F.Org.
Chem.1980,45, 2570.

(25) Crystal data foB: CigH19NO,, M = 257.32, monoclinicC2/c,a
=21.018(6)p = 8.137(3).c = 18.221(4) Af = 119.049(12), V = 2724.1-
(13) A3, Z = 8, D, = 1.255 g/cri. Of the 12 351 reflections that were
collected, 3314 were independefR,( = 0.0351), 177 parameter®; =
0.0525 (for reflections with > 20(1)), wR, = 0.1552 (for all reflections);
CCDC 274100. Crystal data fér CisH17NO, M = 227.30, orthorhombic,
Fdd2,a = 21.927(6),b = 29.244(4),c = 8.089(2) A,V =5187(2) B, Z
= 16, D = 1.164 g/cm. Of the 11 899 reflections that were collected,
3171 were independen®f; = 0.0297), 162 parameter®; = 0.0381 (for
reflections withl > 20(1)), wR, = 0.1023 (for all reflections); CCDC
274101. Crystal data fot': Ci7H22INO, M = 383.26, monoclinicP2i/c,
a=12.834(2)b = 17.241(3),c = 7.9026(13) A8 = 100.799(11)°V =
1717.6(5) R, Z = 4, D, = 1.482 g/cm. Of the 15 777 reflections that
were collected, 4214 were independeRf(= 0.0235), 187 parameteiiz;
= 0.0288 (for reflections with > 20(1)), wR, = 0.0720 (for all reflections);
CCDC 274103. Crystal data f&f: CigH22INO2, M = 387.25, monoclinic,
C2/c,a = 27.251(7),b = 11.5610(18)c = 11.868(3) A, = 109.661-
(15)°, V = 3521.1(13) & Z = 8, D, = 1.461 glcm. Of the 15979
reflections that were collected, 4275 were independ@nt<€ 0.0366), 199
parametersR; = 0.0320 (for reflections with > 20(l)), wR, = 0.0840
(for all reflections); CCDC 274102. Crystal data fivl-1: C17H23INNaO,,

M = 423.25, monoclinicP2;/n, a = 12.2350(7),b = 12.9850(7),c =
12.7805(7) A = 110.2070(8¥, V = 1905.48(18) & Z = 4,D, = 1.475
g/cn?. Of the 17 558 reflections that were collected, 4664 were independent
(Rnt = 0.0261), 209 parameter®; = 0.0236 (for reflections witH >
20(1)), wR, = 0.0634 (for all reflections); CCDC 274104. Crystal data for
TM-2: C42HeaNO4, M = 646.94, monoclinicP2;/c, a = 14.551(2),b =
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Table 1. Selected Crystallographic Data for TwisteeElectron System MoleculeS s) and Some Synthetic Intermediates
twisted molecule species ORTEP drawing of the molecular structure * (ring)C-C(ring) (A) (ring)C-O (A) twist angle (°)”

3 —— 1.5006(18) 1.3767(16) 84.2

5 1.4932(18) 1.3579(17) 85.7
'y 1.496(3) 1.372(3) 87.9
5' 1.496(3) 1.364(3) 86.1

TM-1 1.489(2) 1.312(2) 86.9

T™-2 1.490(5) 1.305(4) 87.5

a50% probability ellipsoids. Hydrogen atoms and solvent molecules have been omitted for clarity. The iodide counterions are included in the drawings
of 4 and5'. b Average of four dihedral angles in the respective crystal structures.

crystallographic analysis of these molecules is the consis-ground state, due to the twist-induced intramolecular charge
tently large arenearene dihedral twist angles (888°) transfer. Thus, there is a pronounced reduction in inter-ring
(Table 1), suggesting that the tetsetho-methylbiaryl sub-  z-conjugation and a dominant zwitterionic ground state in
stitution pattern indeed provides sufficient steric encumbrancethe TM chromophores, evidenced by the departure from
to achieve very large twist angles, a prerequisite for large quinoidal structures where (ringyeC(ring) ~ 1.349 A and
molecular hyperpolarizabilities in sudM chromophore$. C=0~ 1.222 A

Furthermore, it can be seen that the magnitude of this twist |y symmary, synthetic approaches to the first examples
is governed primarily by sterics and is practically independent of unconventional twistedr-electron systemiTM chro-

of chromophore architectufé.indeed, neutral, positively  o5hores have been developed. Crystallographic analysis
charged, and zwitterionic molecules all exhibit comparable ¢\ 0415 large ringring dihedral twist angles~87°) and

twist angles. The (ring)€C(ring) distances in thest}e:\ rgol- highly charge-separated zwitterionic ground states. The
ecules are slightly longer than in typical blaryis](.{187 ): hyperpolarizability physical characteristics will be discussed
doubtless a result of the pronounced steric hindrance. Onelsewhere

the other hand, the (ring)Ya@C(ring) and (ring)C-O distances

in the two zwitterionicTM chromophores are only modestly
shorter than those of the other species, probably a result of
the very small contribution of quinoidal limit forms to the
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